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Directed percolation in two and three dimensions: 11. 
Direction dependence of the wetting velocity 
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Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 
Bombay 400005, India 

Received 20 November 1981, in final form 27 January 1982 

Abstract. We study the behaviour of the average velocity of fluid flow in a random network 
made of oriented diodes and resistors, as a function of the direction of the fluid flow and 
the concentration of resistors. It is shown that there is more than one critical value of 
the concentration across which there is a qualitative change in the behaviour of the wetting 
velocity. Also, it is shown that the directed percolation problem is related to the problem 
of determining the direction-dependent wetting velocity in the undirected percolation 
problem. 

1. Introduction 

In the preceding paper (Dhar 1982) we have studied the percolation properties of a 
random network of oriented diodes and resistors. These circuit elements are arranged 
to form the bonds of a regular lattice (say, a square lattice in two dimensions, or a 
simple cubic lattice in three dimensions). Each bond of the lattice can be a diode 
or a resistor, independent of other bonds, with probability 4 and p respectively 
( p  + 4 = 1). The direction of the diodes is assumed to be in the direction of increasing 
x, y or z coordinates and is not a random variable. It was shown that there exists a 
critical percolation probability pc such that, if the concentration of resistors p is greater 
than p c ,  a point source of fluid will wet all sites of the lattice with probability 1. 

The percolation problem for the diode-resistor percolation is seen to be trivial if 
p 3 pc .  This, of course, does not imply that the diode-resistor network has no interest- 
ing properties in this range of p .  In this paper we study the direction dependence of 
the wetting velocity in these networks. We show that, in general, there is more than 
one critical value of the resistor concentration p across which the wetting velocity 
undergoes a qualitative change. We also discuss the behaviour of the wetting velocity 
in the undirected percolation problem and establish its relationship to the directed 
percolation problem. 

The wetting velocity is defined as follows. We start with a configuration of diodes 
and resistors on the square lattice with all sites dry. At time t = 0, a point source of 
fluid is introduced at the origin. We assume that the fluid takes one unit of time to 
traverse a bond in an allowed direction, and cannot flow in the disallowed direction 
(the corresponding traversal time is infinite). As time passes, more and more of the 
sites of the lattice are wetted, and the boundary of the wetted cluster moves outward. 
We define th? wetting velocity v ( 4 , p )  as the average velocity of this boundary in 
the direction 4. 
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To be more precise, let T ( R )  be the time when the fluid first reaches the site R. 
It can be shown that T ( n R ) / n  converges in probability to some value T,,(R) as n 
tends to infinity. We define (lRl)/Tav(R) as the average velocity in the direction 
$ = R/IRI. 

The problem of the determination of the wetting velocity is known as the first- 
passage percolation problem in the literature. Hammersley and Welsh (1965) defined 
the problem for arbitrary graphs with a more general distribution of traversal times. 
They proved the existence of the large time limit used in the definition of the wetting 
velocity for a wide class of distributions of traversal times, and also obtained some 
lower-bound estimates for the wetting velocity in the case of undirected percolation 
on a square lattice. Two recent reviews of the first-passage percolation theory are by 
Smythe and Wierman (1978) and Hammersley and Welsh (1980). Janson (1981) has 
obtained upper-bound estimates for the wetting velocity in the undirected percolation 
problem. Directional effects in percolation problems have attracted much attention 
lately. Domany and Kinzel (1981) have studied the direction dependence of the 
correlation length near criticality in an exactly soluble model. In this paper we discuss 
the non-analytic behaviour of the wetting velocity as a function of concentration, and 
its directional dependence. A related problem-describing the shape of the infected 
cluster in an epidemic model-has been discussed recently by Durrett and Liggett 
(1981). 

2. Wetting velocity in the diode-resistor percolation 

In this section we discuss the direction dependence of the wetting velocity in diode- 
resistor percolation. For simplicity, we shall explicitly consider only the two- 
dimensional square lattice. The generalisation to three dimensions is quite straightfor- 
ward and is mentioned briefly at the end of the section. 

The direction $ can be specified by the angle 4 the vector $ makes with the 
direction x = y > 0. It is convenient to define the distance between two points (xl, y l )  
and (XZ, y 2 )  as I x 2 - x I /  + Iy2 - y l / ,  and not by the Euclidean metric. It follows immedi- 
ately that the wetting velocity ~ ( 4 ,  p )  cannot exceed 1. 

As upward and rightward flow is always allowed, 

v ( 4 ,  p )  = 1 for 4 =s 7r/4 for all p .  (1) 

u(4, P) = 0 for 4 > P < p C .  (2) 

If p < p c ,  wetting occurs only within a wedge of half-wedge angle 8 ( p ) .  This implies that 

Consider a wetting strategy in which the next step is chosen to be leftward, if 
allowed, otherwise upward. The average direction of motion using this strategy is 
easily seen to be 4 =cotf1( l -2p) ,  and the wetting velocity is clearly 1. The wetting 
velocity will be 1 for all 4 < cotC'(1- 2p), as (say in the second quadrant) we can go 
directly upward once the desired x coordinate has been reached. Thus equation (1) 
may be improved to 

Since wetting in a direction 4 >cot-'( 1 - 2p) must involve some backflow, it seems 
reasonable to conjecture that v ( 4 , p )  is strictly less than 1 if p < p c  and 6 ( p ) > 4  > 
cot-'(l - 2 p ) .  We can derive lower-bound estimates to v ( 4 ,  p )  which show that ~ ( 4 ,  p )  
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is strictly greater than zero in this regime. Consider, for example, the strategy k = 1 
(Dhar 1982). It is easy to see that, using the route determined by this strategy, a fluid 
particle moves in the average direction # = tan-’[(q -p’ ) / (q’  - p ) ]  with an average 
velocity (4  - p 2 ) / ( 4  + p ’ ) .  The true wetting velocity must be larger than this. This gives 

(4) u(tan-’[(q - p 2 ) l ( q 2 - p ) 1 ,  P )  a(q - p ’ ) / ( q  + P ’ ) .  

If we re-define the wetting path, eliminating the unnecessary re-traversals implicit in 
the strategy k = 1, this bound can be increased to 

v(tan-’[(q - p ’ ) / ( q ’ - p ) ~ ,  p ) a  (4  - p 2 > ( 1  - ~ 9 ) / ( ~ ~ + 4 ~ + ~ 4  -p’q2) .  ( 5 )  

In order to go in a direction #, cotC1(l-2p)</#I <cot-’[(q’-p)/(q - p ’ ) ] ,  one may 
first go a distance R1 using strategy k = 0, and then go a distance R -RI in the 
direction cot-’(l - 2p) with velocity 1, the distance R1 being chosen such that the 
total displacement is in the direction #. The average velocity thus obtained lies 
between 1 and u ( t a n - ’ [ ( q - p ’ ) / ( q ’ - p ) ] , p ) ,  and is a lower bound to the velocity 

The k = 1 strategy cannot be used to estimate the wetting velocity in directions 
# > tan-’[(q -p’ ) / (q’  - p ) ] .  For obtaining lower-bound estimates to U(#, p )  we need 
to use k = 2, k = 3 strategies, etc which involve more and more backflows. In the 
limiting case # = B ( p )  we need to consider arbitrarily large backflows, as any strategy 
ignoring backflows of order larger than a given finite integer k will not be able to wet 
in the direction # = B ( p ) .  The determination of the behaviour of U(#, p )  as a function 
of # in the neighbourhood of # = B ( p )  is an interesting and difficult problem requiring 
further investigation. 

A plausible conjecture is that U(#, p )  decreases monotonically from 1, and tends 
to a finite value vdisc(p), as # is increased from cot-’(l-2p) to e@). At # = e ( p )  the 
function is discontinuous, and is zero for all larger values of 4. The size of the 
discontinuity z)disc(p) is 1 at p = 0 and decreases monotonically as p is increased to pc. 
For p just below pc we expect that Udisc(p) varies as a power of p c - p  (this critical 
exponent may be zero). 

The dependence of U(#, p )  is not monotonic in #. To demonstrate this result, we 
first determine an upper bound on U ( # ,  p ) .  

Consider a point P = ( -m,  -n) in the third quadrant far away from the origin. Let 
N ( L ,  m, n, s) be the number of self-avoiding walks from the origin to P of length L 
involving s rightward steps. Clearly such a random walk involves m + s steps leftward, 
(L  - m - n - 2s)/2 steps upward, and ( L  - m + n - 2s)/2 steps downward. Clearly, 
N ( L ,  m, n, s)  is less than the number of all possible paths (self-avoiding or not) having 
length L, ending at (-m, - n )  and having s rightward steps. Thus 

U ( # ,  P I .  

N (L ,  m, n , S ) ~ L ! / { ( m + s ) ! s ! [ ( L - m - n - 2 ~ ) / 2 ] ! [ ( L - m + n - 2 ~ ) / 2 ] ! } .  (6) 

The total number of paths N(L,  m, n )  is obtained by summing N(L,  m, n, s) over all 
allowed values of s, (L  - m - n ) / 2  2 s 2 0: 

N ( L ,  m, n )  = 1 N(L,  m, n, s). (7) 
s 

The probability that a particular self-avoiding path from the origin to P of length L 
is allowed is P ( ~ + ~ + ” ) ’ ’  . The probability that at least one of the N ( L ,  m, n )  paths is 

Finally, we sum all paths allowed is less than or equal to N(L,  m, n )  p 
of length less than or equal to L to get an upper bound on the probability that at 

( L + m + n ) / Z  
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least one of them is allowed (i.e. the wetting time T up to the point P is less than or 
equal to L). We get 

For small values of n / m  there exists a value Vb< 1 such that for all L / m  < V i ' ,  the 
right-hand side can be made arbitrarily small in the limit m, n, L + CO with n / m  and 
L/m held constant. This provides us with an upper bound on the wetting velocity 

u ( 4 ,  p )  11 + I cot(4 - .rr/4)ll/x (9) 

where x is the largest positive real number such that 

m-tm lim m-'logN(xm, m, ml cot(#-7r/4)1)~-[l+x+cot(q5--rr/4)](logp)/2. (10) 

Numerical calculation shows that for p = 0.7, 0.8, 0.9, u(371/4, p )  is less than 0.9181, 
0.9543, 0.9816 respectively. These upper bounds on u ( 4 , p )  can obviously be 
improved by using sharper estimates of N(L,  m, n, s), etc. The present bound is, 
however, quite sufficient for our purpose here. It shows that u ( 4 , p )  is strictly less 
than 1 in the neighbourhood of q5 = 37r/4 for all values of p < 1. This is intuitively 
reasonable, as in the direction 4 = 37/4 all paths with wetting velocity 1 are essentially 
one-dimensional. The formal proof is somewhat long because it is necessary to show 
that the probability of the existence of allowed paths of length m +Am" to the site 
(-m, 0) tends to zero as m tends to infinity for all LY < 1. 

Surprisingly, the above result is not true for any other value of 4. There exists a 
value p c 2 ( 4 )  such that for all p > p c 2 ( 4 )  the wetting velocity U(& p )  is exactly 1. For 
4 < 37r/4 this result follows from equation (3). For 4 > 3 ~ / 4  this may be seen as 
follows. We know from duality arguments (Dhar eta1 1981) that the critical probability 
for diode-insulator percolation (DIP) on a square lattice is l -pc .  Let us consider 
paths in a diode-resistor configuration on a square lattice which involve only leftward 
or downward steps. With this additional constraint, the resistors act as diodes (allowing 
leftward or downward flow) and the diodes as insulators (allowing no flow). If p > 1 - pc ,  
there are infinite connected paths in this problem, and we can go arbitrarily far using 
only leftward or downward paths, without any re-traversals. The directions in which 
we can go are bounded by 7r f BDrP(p), where BDIP(p) is the half-wedge angle of the 
infinitely wetted cluster in DIP. Clearly the wetting velocity along these paths is 1. 
Also, by duality, BDIP(p) is 77/2 - B ( l  - p ) .  Hence we get 

u ( 4 ,  p )  = 1 for 4 > rr/2+6(1 - p )  and p > 1 - p c .  (11) 

These results are summarised in figure 1.  For p <pc ,  u(q5, p )  is 1 for 4 < 
cot-'(l-2p). It is non-unity and positive for cot-'(l-2p) < 4 c B(p) ,  and zero other- 
wise. There is a discontinuity in u ( 4 ,  p )  at B ( p )  (curve A). If 1 - p c > p  >pc,  u ( 4 ,  p )  
is equal to 1 up to some value of 4, and strictly less than 1 for all higher values (curve 
C). For p > 1 -pc ,  U(+, p )  is 1 except in an interval which includes the point 4 = 3 ~ / 4  
(curve E). The size of this interval shrinks as p tends to 1.  The curves B and D 
describe the expected behaviour of the wetting velocity at p = pc  and p = 1 - p c  
respectively. 

The behaviour of the wetting velocity in three dimensions is qualitatively the same. 
Of course, in three dimensions there is no simple relation between p?IP and pFRP. 
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Figure 1. The qualitative behaviour of the wetting velocity U(&, p )  as a function of the 
direction q!~ for various values of p .  The curves A, B, C, D and E correspond respectively 
to the cases p < p m  p = p c ,  p c < p  < 1 -ec, p = 1 - p c  and p >  1 - p c .  

If p exceeds pFTP there are directions in which the wetting velocity is exactly 1. Also, 
for all p < 1, the wetting velocity along the negative coordinate axes is always less 
than 1. 

3. Direction dependence of wetting velocity in undirected percolation 

It is interesting to note that the above arguments may be generalised to the case of 
undirected percolation as well. In this case, there is always a non-zero probability 
that a source at origin will wet only a finite number of sites, or that a test site far 
away will be left dry even if the source belongs to an infinite cluster. In defining 
wetting velocity, it is reasonable to ignore such configurations. We may assume that 
the source belongs to the infinite cluster, and define wetting velocity as the velocity 
of the outer boundary of the wetted cluster (we ignore holes). With this convention, 
in this case too, if p >p:IP, there are directions in which the wetting velocity is exactly 
1. Also, along the coordinate axes the wetting velocity is less than 1 for all p < 1. 
Hence the wetting velocity is not isotropic in the case of undirected percolation. 

In three dimensions, if p is slightly greater than p:IP, the directions with wetting 
velocity equal to 1 lie inside eight narrow cones with axes near the directions fx = * y  = 
fz >O. As p is increased, these cones subtend larger solid angles, and beyond a 
certain value of p (this critical value must be less than or equal to p:IP on a square 
lattice) they merge with each other and we have instead six disjoint cones with axes 
in the direction of the coordinate axes such that the wetting velocity inside these cones 
is strictly less than 1. 

We have thus established a correspondence between the wetting velocity in the 
undirected percolation and the problem of directed percolation. For example, the 
dependence of the wedge angle on the probability of bonds in the directed percolation 
may be deduced from the calculation of directions with wetting velocity 1 in the 
corresponding undirected percolation problem. In the directions where the wetting 
velocity is 1, the difference between the expected wetting time to a point and its 
distance from the origin is a measure of the average separation between 'highways' 
in the problem. (The terminology is due to Hammersley and Welsh (1965).) Clearly, 



1864 

the problem of the determination of the direction dependence of the wetting velocity 
is very interesting, and its elucidation would improve our understanding of percolation 
transitions considerably. This looks like an interesting problem for further study. 
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